At the Brink of Extinction

  • "Paleoecology and the Assisted Migration Debate: Why a Deep-Time Perspective Is Vital" online essay by Torreya Guardian Connie Barlow, February 2011.
    Connie Barlow (with assistance from Russell Regnery) has posted a short, 11-point summary essay that aggregates the data and develops strong scientific reasoning in favor of assisted migration for Torreya taxifolia. The essay also advocates a shift in the foundational paradigm from assuming 1491 is the proper time-standard for assessing native range to a "deep-time" perspective grounded in a paleoecological understanding that native ranges for all plants in temperate latitudes of the Northern Hemisphere have undergone substantial altitudinal and/or latitudinal migrations that have tracked changes in climate during the past several million years of Pleistocene glacial and interglacial cycles.

    "Based on fossil records, we can speculate that the geographical range of T. taxifolia included North Carolina and perhaps, it was forced south by glaciers, and when they retreated, it became isolated in small areas of the southeastern United States." — p. 12 of "Torreya taxifolia (Florida Torreya) 5-Year Review: Summary and Evaluation", 2010, U.S. Fish & Wildlife Service

       In the 1950s, Torreya taxifolia suffered a catastrophic decline, the ultimate cause of which is still unexplained. By the mid-1960s, no large adult specimens — which once measured more than a meter in circumference and perhaps 20 meters tall — remained in the wild, felled by what seemed to be a variety of fungal pathogens.

    Today, the wild population persists as mere stump sprouts, along the Apalachicola River of the Florida panhandle, cyclically dying back at the sapling stage, such that seeds are rarely, if ever, produced. T. tax thus joins American chestnut in maintaining only a juvenile and diminishing presence in its current range.

  • Access in PDF the official USFWS ESA plan (updated summer 2010) for managing this endangered species, for which, "Given the lack of seed production in the wild and potentially a decline due to a disease, all population viability models predict extinction." (p. 11)

  • Access in PDF a 2013 paper (by L. Vargas and V. Negron-Ortiz) on soil fungi and potential root pathogens of T. taxifolia in its historically native range.

    LEFT: The Apalachicola River in Florida's Torreya State Park (January)

  • 1962: "The Florida Torreya: Efforts to Preserve It" letter by W. A. Coldwell in Science.

    In a 1990 article in Natural History magazine, one of the original participants in the 1990s branchlet-rooting program to prevent species extinction concluded his article on Torreya taxifolia this way:

    Citaton: Nicholson, Rob, 1990. "Chasing Ghosts: the steep
    ravines along Florida's Apalachicola River hide the last
    survivors of a dying species, Torreya taxifolia."
    Natural History (December): 8-13.

       Rob Nicholson (of the Botanic Garden at Smith College, Massachusetts) wrote:

    "While the few remaining saplings may outlast the blight, not many people who have seen the trees would wager their homes on it. More likely, clusters of trees, propagated from specific ravines, will be grown in botanical gardens, universities, preserves, and state parks. This Florida native, as evidenced by the few healthy trees in cultivation, seems to thrive on the southern slopes of the Appalachian Mountains and is more cold tolerant than its present range would suggest.

    Possibly an Apalchicola refugium can be re-created, an artificial Torreya forest where pollen can float, genes mingle, and the evolution of the past hundred million years can continue, even if it is in a pitifully discounted format."

  • 1984 Federal Register establishment of Torreya taxifolia as endangered is now available online — and it establishes this species as a Pleistocene relict. The first paragraph begins:

       "An evergreen tree reaching 18 meters tall, Torreya taxifolia (Florida torreya) was first discovered in 1834 and formally described in 1838. The Florida torreya and other endemics of the Apalachicola River system have received much attention from scientists and local residents. The relictual nature of this area accounts for the presence of many unique species (James, 1967). During recent glaciations, species migrated southward by way of the Apalachicola River system, which served as a refugium during cooling periods. The Apalachicola River is the only Deep River system that has its headwaters in the southern Appalachian Mountains. With the receding of the glaciers, cool moist conditions persisted on the bluffs and ravines of the Apalachicola River after climatic change rendered the surrounding area much drier and warmer."

    The 1984 registration continues: "All mature viable trees are located in botanical gardens and arboreta. The wild trees do not now have good long-term survival prospects. The initial focus of recovery will be to address controlling the disease. After the disease has been overcome, recovery efforts would address reintroduction of the species into the wild."

  • See a detailed, old U.S. Forest Service page on Torreya taxifolia before "assisted migration" was even considered.

    Note: As of 2016, the USF&WS webpage for the 10 listed plant species managed by the Panama City FL office mentions for Ribes echinellum that "disjunct populations may represent Pleistocene refugia, remnants of what was once widespread Tertiary vegetation." Yet on the same page no mention is made of the Apalachicola habitat of Torreya as being a refugium (as is well known to paleoecologists). Thus this key characterization was dropped from descriptions sometime after the 1984 federal register notice was published. Here is the brief description that now appears on the plant list page:

    Torreya taxifolia Arn. is a dioecious evergreen conifer endemic to the ravine slopes on the eastern bank of the Apalachicola River in northern Florida and in parts of Georgia. Prior to 1950s, T. taxifolia was estimated to be the seventh most abundant tree species within Apalachicola Bluff regions. Surveys conducted in areas with known high tree densities suggested that T. taxifolia has lost at least 98.5% of its total population size since the early 1900s, causing the species to be federally listed as endangered in 1984. The loss of T. taxifolia is thought to have primarily been a result of fungal pathogens during the 1950s and 1960s, or a combination of environmental stress and native pathogens, but studies have yet to provide an explanation for this species' decline. Despite the conservation actions to protect and determine the cause of this species' decline, the degree of threat to its persistence remains high; therefore the threat of extinction that faces T. taxifolia is imminent.
    However, on page 12 of the current recovery plan, paleoecological information is well provided:
    Fossil records of Torreya are limited to seeds, leaves, and secondary wood of the Upper Cretaceous (Boeshore and Gray 1936, Chaney 1950). The records indicated that the distribution of the genus in past geological times was much wider than the present distribution. A fossil named T. Antigua, which has some characteristics in common with T. taxifolia and T. californica, was described from the Mid-Cretaceous of North Carolina and was also collected near MacBride's Ford, Georgia (Boeshore and Gray 1936). Currently, Florida torreya grows naturally in three counties in Florida: Gadsden, Liberty, and Jackson. It is also found in southern Decatur County, GA, just north of Chattahoochee, FL. Based on fossil records, we can speculate that the geographical range of T. taxifolia included North Carolina and perhaps it was forced south by glaciers, and when they retreated, it became isolated in small areas of the southeastern United States.

       VIDEO: Site Visits to Florida's Endangered Torreya and Yew Trees

    Connie Barlow presents 15 years of baseline photos and videos she recorded of Torreya taxifolia and Taxus floridana in their historically native range in Torreya State Park in northern Florida. Photos of spectacular California Torreya trees, recorded by Barlow in 2005, show the potential for Florida Torreya recovery efforts to strive for. Fred Bess shows (in 2014 video) 2 Asian conifers (Cephalotaxus and Cunninghamia) used in landscaping that are Torreya look-alikes. Paleoecological evidence that Florida's Torreya was "left behind" in its peak glacial refuge supports "assisted migration" actions.

  • Excerpts from a detailed chapter on Florida Torreya (2015, by Kara Rogers, University of Arizona Press) are accessible at the google books site, page 101, for The Quiet Extinction: Stories of North America's Rare and Threatened Plants.
       "In 1955, officials at Torreya State Park, in the heart of Florida torreya habitat, reported a steep decline in the tree's populations. . . Seemingly overnight the situation had turned dire. Adult populations had been decimated, and there was no indication that the species was reproducing. Florida torreya, Kurz and Godfrey warned, was on the brink of extinction. . . . The disease seemed to be worse for trees that received full sunlight than for those in more shaded areas. But the result was still the same. . . The only individuals that were spared the disease were seedlings younger than six months. They presumably were started from seeds left behind by dead adults. By the 1990s, however, virtually all adult trees in the wild had been killed, and between 1,000 and 1,350 juveniles remained. Many young trees displayed symptoms of the disease, and over time their stems were killed off, one by one. The likelihood of their survival being prolonged depended in part on the size of their main stem. A larger main stem meant a more promising outlook, at least for a while. But once the main stem died or when a tree was down to three or fewer stems, each a foot and a half tall or less, death ensued.
        "By 2010, among wild populations of Florida torreya, only six plants were able to produce cones." Note: Several pages of detailed disease descriptions and experiments then follow.
        "Possibly also affecting the survival of Florida torreya is damage to protective communities of mycorrhizal fungi that associate with Florida torreya. Nearly all of its mycorrhizal associates belong to the genus Glomus, which contains a number of species that help defend trees against root pathogens. The abundance of those fungi, however, appears to be greater among garden explants than among trees in native habitats. Wild Florida torreya currently inhabit heavily shaded areas, which, combined with the presence of disease, may limit the trees' ability to support beneficial mycorrhizal fungi.
        Note: Several pages follow that detail current management projects attempting to restore Florida torreya in its historically native range. The remainder of the chapter highlights the work of Torreya Guardians, as imaged below:


    2015 ADDENDUM by Connie Barlow:

    Supplemental hypothesis on why Florida Torreya was "left behind" in its peak glacial refuge of Florida's Apalachicola River: Might Torreya taxifolia have become stranded in its peak glacial refuge, not so much because of the slow seed-dispersal capacities of squirrels (as hypothesized by Barlow here and here) but because of the absence of northward flowing rivers between Florida and the southern Appalachians? Barlow arrived at this hypothesis during a field visit to the largest remaining Torreya taxifolia in existence: the one along the Chattahoochee River, in the front yard of an historic-register home at the riverfront. (Click on video below.)

       While visiting the sole remaining T. taxifolia in Columbus GA, Connie Barlow was struck by its location along a free-flowing section of the Chattahoochee River. The Chattahoochee is the main conduit between the peak-glacial plant refuge in n. Florida and the Appalachian Mountains. Might Torreya taxifolia have been "left-behind" in its Florida refuge because the Chattahoochee River flows southward? The tree could have dropped seeds into the river for a speedy journey south, but it would have been utterly dependent on the slower actions of squirrels for the the return trip north.

  • Visit the webpage that includes info, photos, and video of this oldest tree.

  • The International Union for the Conservation of Nature (IUCN) monitors endangered species via its IUCN Red List of Threatened Species. An update of its "critically endangered" Torreya taxifolia IUCN listing in 2011 includes these entries:

    The estimated 98% decline in mature individuals within the last three generations means that Torreya taxifolia meets the criteria for Critically Endangered under Criterion A2. The actual causes of the decline (the death of individuals and the reproductive failure associated with infection from a range of pathogens) is not well understood: recent surveys indicate it is continuing. The decline may be reversible in the future if those causes can be identified and controlled.

    Restricted to a few ravines along the east side of the Appalachicola River in northern Florida and southern Georgia. Its total extent of occurrence is estimated to be about 200 km2 with an area of occupancy under 50 km2.

    The current population is estimated to be between 500 and 600 trees. Of these, less than 10 are known to produce male or female cones (this species is dioecious). Individuals persist as stump sprouts. Before the start of the decline in the early 1950s, the population was estimated to have been more than 600,000. Since then there has been a decline of more than 98%.

    Torreya taxifolia occurs along limestone bluffs on the Appalachicola River in a region with a warm and humid climate, occasionally influenced in winter by cold waves from the north that dip temperatures below the freezing point. It grows mostly in the shade of wooded ravines and steep, N-facing slopes under canopy of Fagus grandifolia, Liriodendron tulipifera, Acer barbatum, Liquidambar styraciflua, Quercus alba, and occasionally pines (Pinus taeda, P. glabra). Often these woods are hung with vines (e.g. Smilax spp., Bignonia capreolata). Another rare conifer, Taxus floridana, occasionally grows with Torreya taxifolia.

    The most significant current threat to T. taxifolia is the continued reproductive failure associated with fungal pathogens. Individuals do not reach reproductive size before being top-killed. Recent research has identified a previously unknown species of Fusarium that may be the cause (J.A. Smith pers. comm. September 2010). Rubbing by deer is an additional problem as it causes physical damage and may also be a vector for disease transmission. Changes in landuse and fire regimes in surrounding areas along with changes in hydrology and soil chemistry linked to the construction of dams may also be implicated in its historical decline. Augmentation plantings within the natural range have proved to be susceptible to infection: no naturally resistant clones have been identified to date. Population viability analyses indicate that extinction within its native range is inevitable. Below: Sample graphic from the IUCN Red List page for Florida Torreya.

       Image left from:

    Taxonomy and Ecology of Woody Plants in North American Forests:
    (Excluding Mexico and Subtropical Florida)

    by James S. Fralish and Scott B. Franklin (Feb 8, 2002)

    Hardcover: 624 pages
    Publisher: Wiley; 1 edition (February 8, 2002)

    Note the first sentence:

    "Prior to glaciation and the accompanying colder climate, Torreya was circumpolar at high latitudes."

       Notice the species richness centered over the Apalachicola region of northern Florida.

    Illustration from "Contemporary richness of holarctic trees and the historical pattern of glacial retreat," by Daniel Montoya et al., 2007, Ecography 30:173-182.

    Jason Smith at the University of Florida is lead author of several papers probing the pathology of disease organisms contributing to the demise of Torreya taxifolia in its historically native range. Click the image right for a pdf of a detailed analysis of fungal pathogens (published in 2010).

    In 2013, Smith was one of 5 coauthors, publishing in the journal Mycologia about the newly identified and named pathogen Fusarium torreyae. ABSTRACT: During a survey for pathogens of Florida torreya (Torreya taxifolia) conducted in 2009, a novel Fusarium species was isolated from cankers affecting this critically endangered conifer whose current range is restricted to northern Florida and southwestern Georgia. Published multilocus molecular phylogenetic analyses indicated that this pathogen represented a genealogically exclusive, phylogenetically distinct species representing one of the earliest divergences within the Gibberella clade of Fusarium. Furthermore, completion of Koch's postulates established that this novel species was the causal agent of Florida torreya canker disease. Here, we formally describe this pathogen as a new species, Fusarium torreyae.

    Editor's note: Investigations of soil and root microbes, fungi, and potential pathogens sampled from distressed T. taxifolia specimens in this tree's climatically challenged "native" range will almost surely be devoid of beneficial mycorrhizal root fungi that would have supported healthy populations in the early 20th century. Urgently recommended are studies of mutualistic root fungi discovered in seedlings sprouting under healthy mature T. taxifolia trees in North Carolina. In 2013, Torreya Guardians serendipitously made that discovery; click here for Torreya Guardians observations of beneficial mychorrhizal fungi on NC seedling roots of T. taxifolia.


    "The Decline of Florida Torreya: An Endemic Conifer on the Edge of Extinction", by Jason A. Smith and Aaron Trulock, 2010, University of Florida School of Forest Resources and Conservation, research paper.

    Elizabeth A. Atchley in 2004 wrote her master's thesis on this topic: "The Effects of Habitat Alterations on Growth and Vitality of Torreya taxifolia Arnott in Northern Florida, U.S.A". It is an excellent background document, and can be accessed online in PDF. Page 12 includes,

    "It is also possible that current populations are climatic relicts that once had a more northerly range, but during the last glacial the advancing ice pushed them south where they mixed with the temperate deciduous forest species. It is possible that when the ice retreated, the Torreya did not reoccupy their northern range and could only survive in cool, moist refuges such as evergreen mountain forests, ravines, and some riverbanks. This is believed to be the case for Torreya taxifolia.

    Torreya expert Mark Schwartz observes:

    "There are probably fewer than 1000 individuals extant in the current distribution and the numbers are dwindling. At last count, there is a single known individual that is producing seeds in the wild (personal observation). Aside from this one individual and the approximately 8 seeds it has produced, there has been no observed seedling recruitment for at least 20, and probably 40 years."

    In June 2009, a paper published in the Proceedings of the National Academy of Sciences contained supplementary information that detailed the plight of Florida Torreya. Richardson et al. 10.1073/pnas.0902327106 wrote:

    Torreya taxifolia (Cephalotaxaceae) is a dioecious coniferous tree that is endemic to the bluffs that extend 510 km eastward from the Apalachicola River for approximately 35 km in northern Florida, extending less than a kilometer into Georgia. During the late 1950s and early 1960s, all adult trees throughout its range were killed as a consequence of a pathogen outbreak. The current population is likely not 1,500 individuals, likely seeds and seedlings that were viable at the time of the decline. During the past 40 years, there has been a single tree that has been observed to have matured into a seed-bearing adult. It produced 2 seeds. This individual is now dead, and the seeds produced are presumed dead as well. The agent of the decline is unknown but is thought to be a fungal pathogen. The current rate of decline is slow. Estimates of growth and mortality data suggest that it will be at least a century before the population goes extinct in the wild. Cuttings from 150 trees are currently grown in botanic gardens.
        More recently, 2 efforts have begun for the conservation of this species. Torreya taxifolia has been planted in North Carolina in an attempt to establish populations in that region (http:// This effort was done as an indirect response to climate change. The species is in declining in its native range with no sign of recovery. Proponents felt that this species 'belongs' in the region where they relocated it. They also feel that this intervention is the best chance for the species to survive, given its condition in its native range.

       Specimen No. 1

    Reclining Specimen #1 at Torreya State Park in northern Florida

       Bark damage near base of Specimen No. 1. (Notice browsed suckers to right.)
       Specimen No. 2

    Specimen #2 near creek (with bald cypress knees visible), amid American holly tree, beech, evergreen magnolia), January.

       Evidence of pathogens on foliage (left) and stem (right) on Specimen No. 2

       Access a webpage for a PHOTO-ESSAY BY GLENN RILKE of his periodic visits to surviving Torreya trees in historically native range in Torreya State Park (panhandle of Florida).

  • "Coevolution of Cycads and Dinosaurs" paper by George E. Mustoe, The Cycad newsletter, March 2007.
    Barlow and Martin 2004 proposed that Torreya taxifolia might have gotten trapped in its peak-glacial pocket reserve (in northern Florida) for lack of its coevolved seed disperser, and thus was unable to geographically respond to the warming interglacial climate. The above paper suggests that another taxon of gymnosperm that thrived (along with genus Torreya) in the Jurassic period might have suffered from an inability to easily track climate change when the seed-dispersing dinosaurs died out.

       Download in PDF two articles, for and against assisted
       migration of Torreya taxifolia, published as the featured
       Forum in the Winter 2005 issue of Wild Earth. Download
       the pro and con articles separately for printing on standard   
       size paper. Or, for viewing the 2-article Forum as it
       appeared in publication (wide-screen, with all illustrations),
       download the "Forum."

      FOR assisted migration, by Connie Barlow & Paul Martin  

      ANTI assisted migration by Mark Schwartz

      FORUM (both articles for wide screen)

      Standards for Assisted Migration (by Barlow & Martin 2004) 

      "Rewilding North America" — The 18 August 2005 issue
      of the prestigious science journal, Nature contains an advocacy
      article that proposes "rewilding" close-kin of some of the
      large mammals that went extinct in North America at the
      end of the Pleistocene
    , 13 thousand years ago. By comparison,
      the proposal to "Rewilding Torreya taxifolia" looks mild! To access
      this amazing article, you can view or download it at

  • Learn about efforts to SAVE Torreya taxifolia from extinction and how our actions are legal.

  • Explore a photo-essay of Torreya Guardians REWILDING ACTION in North Carolina (2008).


    Return to HOME PAGE

    Annotated List of Papers/Reports Online re Assisted Migration

    Contact us